faces_server_python_rknpu_o.../app/models/README.md
2025-12-27 15:36:20 +01:00

1.7 KiB
Raw Permalink Blame History

git clone https://github.com/Daedaluz/rknn-docker.git cd rknn-docker sudo docker build -t rknn-lite . docker run -it --rm
-v $(pwd):/workspace
rknn-lite
bash cd wirkspace python3 convert_models.py

poi python3 test_rknn.py risultato Runtime init OK (CPU mode)

SCRFD (Face Detector) https://github.com/yakhyo/face-reidentification/releases/download/v0.0.1/det_2.5g.onnx opz https://github.com/yakhyo/face-reidentification/releases/download/v0.0.1/det_500m.onnx https://github.com/yakhyo/face-reidentification/releases/download/v0.0.1/det_10g.onnx

ArcFace leggero https://github.com/yakhyo/face-reidentification/releases/download/v0.0.1/w600k_mbf.onnx pesante e piu accurato https://github.com/yakhyo/face-reidentification/releases/download/v0.0.1/w600k_r50.onnx

SCRFD (Face Detector) ONNX diretto

Dalla release del progetto facereidentification che include i modelli SCRFD:

SCRFD 2.5G

https://github.com/yakhyo/face-reidentification/releases/download/v0.0.1/det_2.5g.onnx

(Opzionali)

SCRFD 500Mhttps://github.com/yakhyo/face-reidentification/releases/download/v0.0.1/det_500m.onnx

SCRFD 10Ghttps://github.com/yakhyo/face-reidentification/releases/download/v0.0.1/det_10g.onnx

🔹 ArcFace (Face Recognition) ONNX diretto

Dalla stessa release, modelli ArcFace in ONNX:

ArcFace MobileFace (veloce, leggero)

https://github.com/yakhyo/face-reidentification/releases/download/v0.0.1/w600k_mbf.onnx

ArcFace ResNet50 (più pesante, più accurato)

https://github.com/yakhyo/face-reidentification/releases/download/v0.0.1/w600k_r50.onnx

📌 Consiglio tecnico per RK3588

Per Orange Pi 5 Plus:

SCRFD 2.5G → miglior compromesso velocità/precisione

ArcFace MobileFace (w600k_mbf.onnx) → più leggero, conversione RKNN più stabile