99 lines
No EOL
6 KiB
JavaScript
99 lines
No EOL
6 KiB
JavaScript
import { isTensor3D, TfjsImageRecognitionBase } from 'tfjs-image-recognition-base';
|
|
function extractorsFactory(weightMap, paramMappings) {
|
|
var extractWeightEntry = TfjsImageRecognitionBase.extractWeightEntryFactory(weightMap, paramMappings);
|
|
function extractPointwiseConvParams(prefix, idx, mappedPrefix) {
|
|
var filters = extractWeightEntry(prefix + "/Conv2d_" + idx + "_pointwise/weights", 4, mappedPrefix + "/filters");
|
|
var batch_norm_offset = extractWeightEntry(prefix + "/Conv2d_" + idx + "_pointwise/convolution_bn_offset", 1, mappedPrefix + "/batch_norm_offset");
|
|
return { filters: filters, batch_norm_offset: batch_norm_offset };
|
|
}
|
|
function extractConvPairParams(idx) {
|
|
var mappedPrefix = "mobilenetv1/conv_" + idx;
|
|
var prefixDepthwiseConv = "MobilenetV1/Conv2d_" + idx + "_depthwise";
|
|
var mappedPrefixDepthwiseConv = mappedPrefix + "/depthwise_conv";
|
|
var mappedPrefixPointwiseConv = mappedPrefix + "/pointwise_conv";
|
|
var filters = extractWeightEntry(prefixDepthwiseConv + "/depthwise_weights", 4, mappedPrefixDepthwiseConv + "/filters");
|
|
var batch_norm_scale = extractWeightEntry(prefixDepthwiseConv + "/BatchNorm/gamma", 1, mappedPrefixDepthwiseConv + "/batch_norm_scale");
|
|
var batch_norm_offset = extractWeightEntry(prefixDepthwiseConv + "/BatchNorm/beta", 1, mappedPrefixDepthwiseConv + "/batch_norm_offset");
|
|
var batch_norm_mean = extractWeightEntry(prefixDepthwiseConv + "/BatchNorm/moving_mean", 1, mappedPrefixDepthwiseConv + "/batch_norm_mean");
|
|
var batch_norm_variance = extractWeightEntry(prefixDepthwiseConv + "/BatchNorm/moving_variance", 1, mappedPrefixDepthwiseConv + "/batch_norm_variance");
|
|
return {
|
|
depthwise_conv: {
|
|
filters: filters,
|
|
batch_norm_scale: batch_norm_scale,
|
|
batch_norm_offset: batch_norm_offset,
|
|
batch_norm_mean: batch_norm_mean,
|
|
batch_norm_variance: batch_norm_variance
|
|
},
|
|
pointwise_conv: extractPointwiseConvParams('MobilenetV1', idx, mappedPrefixPointwiseConv)
|
|
};
|
|
}
|
|
function extractMobilenetV1Params() {
|
|
return {
|
|
conv_0: extractPointwiseConvParams('MobilenetV1', 0, 'mobilenetv1/conv_0'),
|
|
conv_1: extractConvPairParams(1),
|
|
conv_2: extractConvPairParams(2),
|
|
conv_3: extractConvPairParams(3),
|
|
conv_4: extractConvPairParams(4),
|
|
conv_5: extractConvPairParams(5),
|
|
conv_6: extractConvPairParams(6),
|
|
conv_7: extractConvPairParams(7),
|
|
conv_8: extractConvPairParams(8),
|
|
conv_9: extractConvPairParams(9),
|
|
conv_10: extractConvPairParams(10),
|
|
conv_11: extractConvPairParams(11),
|
|
conv_12: extractConvPairParams(12),
|
|
conv_13: extractConvPairParams(13)
|
|
};
|
|
}
|
|
function extractConvParams(prefix, mappedPrefix) {
|
|
var filters = extractWeightEntry(prefix + "/weights", 4, mappedPrefix + "/filters");
|
|
var bias = extractWeightEntry(prefix + "/biases", 1, mappedPrefix + "/bias");
|
|
return { filters: filters, bias: bias };
|
|
}
|
|
function extractBoxPredictorParams(idx) {
|
|
var box_encoding_predictor = extractConvParams("Prediction/BoxPredictor_" + idx + "/BoxEncodingPredictor", "prediction_layer/box_predictor_" + idx + "/box_encoding_predictor");
|
|
var class_predictor = extractConvParams("Prediction/BoxPredictor_" + idx + "/ClassPredictor", "prediction_layer/box_predictor_" + idx + "/class_predictor");
|
|
return { box_encoding_predictor: box_encoding_predictor, class_predictor: class_predictor };
|
|
}
|
|
function extractPredictionLayerParams() {
|
|
return {
|
|
conv_0: extractPointwiseConvParams('Prediction', 0, 'prediction_layer/conv_0'),
|
|
conv_1: extractPointwiseConvParams('Prediction', 1, 'prediction_layer/conv_1'),
|
|
conv_2: extractPointwiseConvParams('Prediction', 2, 'prediction_layer/conv_2'),
|
|
conv_3: extractPointwiseConvParams('Prediction', 3, 'prediction_layer/conv_3'),
|
|
conv_4: extractPointwiseConvParams('Prediction', 4, 'prediction_layer/conv_4'),
|
|
conv_5: extractPointwiseConvParams('Prediction', 5, 'prediction_layer/conv_5'),
|
|
conv_6: extractPointwiseConvParams('Prediction', 6, 'prediction_layer/conv_6'),
|
|
conv_7: extractPointwiseConvParams('Prediction', 7, 'prediction_layer/conv_7'),
|
|
box_predictor_0: extractBoxPredictorParams(0),
|
|
box_predictor_1: extractBoxPredictorParams(1),
|
|
box_predictor_2: extractBoxPredictorParams(2),
|
|
box_predictor_3: extractBoxPredictorParams(3),
|
|
box_predictor_4: extractBoxPredictorParams(4),
|
|
box_predictor_5: extractBoxPredictorParams(5)
|
|
};
|
|
}
|
|
return {
|
|
extractMobilenetV1Params: extractMobilenetV1Params,
|
|
extractPredictionLayerParams: extractPredictionLayerParams
|
|
};
|
|
}
|
|
export function extractParamsFromWeigthMap(weightMap) {
|
|
var paramMappings = [];
|
|
var _a = extractorsFactory(weightMap, paramMappings), extractMobilenetV1Params = _a.extractMobilenetV1Params, extractPredictionLayerParams = _a.extractPredictionLayerParams;
|
|
var extra_dim = weightMap['Output/extra_dim'];
|
|
paramMappings.push({ originalPath: 'Output/extra_dim', paramPath: 'output_layer/extra_dim' });
|
|
if (!isTensor3D(extra_dim)) {
|
|
throw new Error("expected weightMap['Output/extra_dim'] to be a Tensor3D, instead have " + extra_dim);
|
|
}
|
|
var params = {
|
|
mobilenetv1: extractMobilenetV1Params(),
|
|
prediction_layer: extractPredictionLayerParams(),
|
|
output_layer: {
|
|
extra_dim: extra_dim
|
|
}
|
|
};
|
|
TfjsImageRecognitionBase.disposeUnusedWeightTensors(weightMap, paramMappings);
|
|
return { params: params, paramMappings: paramMappings };
|
|
}
|
|
//# sourceMappingURL=extractParamsFromWeigthMap.js.map
|