65 lines
No EOL
4 KiB
JavaScript
65 lines
No EOL
4 KiB
JavaScript
import * as tslib_1 from "tslib";
|
|
import * as tf from '@tensorflow/tfjs-core';
|
|
import { TfjsImageRecognitionBase } from 'tfjs-image-recognition-base';
|
|
function extractorsFactory(extractWeights, paramMappings) {
|
|
var extractConvParams = TfjsImageRecognitionBase.extractConvParamsFactory(extractWeights, paramMappings);
|
|
var extractFCParams = TfjsImageRecognitionBase.extractFCParamsFactory(extractWeights, paramMappings);
|
|
function extractPReluParams(size, paramPath) {
|
|
var alpha = tf.tensor1d(extractWeights(size));
|
|
paramMappings.push({ paramPath: paramPath });
|
|
return alpha;
|
|
}
|
|
function extractSharedParams(numFilters, mappedPrefix, isRnet) {
|
|
if (isRnet === void 0) { isRnet = false; }
|
|
var conv1 = extractConvParams(numFilters[0], numFilters[1], 3, mappedPrefix + "/conv1");
|
|
var prelu1_alpha = extractPReluParams(numFilters[1], mappedPrefix + "/prelu1_alpha");
|
|
var conv2 = extractConvParams(numFilters[1], numFilters[2], 3, mappedPrefix + "/conv2");
|
|
var prelu2_alpha = extractPReluParams(numFilters[2], mappedPrefix + "/prelu2_alpha");
|
|
var conv3 = extractConvParams(numFilters[2], numFilters[3], isRnet ? 2 : 3, mappedPrefix + "/conv3");
|
|
var prelu3_alpha = extractPReluParams(numFilters[3], mappedPrefix + "/prelu3_alpha");
|
|
return { conv1: conv1, prelu1_alpha: prelu1_alpha, conv2: conv2, prelu2_alpha: prelu2_alpha, conv3: conv3, prelu3_alpha: prelu3_alpha };
|
|
}
|
|
function extractPNetParams() {
|
|
var sharedParams = extractSharedParams([3, 10, 16, 32], 'pnet');
|
|
var conv4_1 = extractConvParams(32, 2, 1, 'pnet/conv4_1');
|
|
var conv4_2 = extractConvParams(32, 4, 1, 'pnet/conv4_2');
|
|
return tslib_1.__assign({}, sharedParams, { conv4_1: conv4_1, conv4_2: conv4_2 });
|
|
}
|
|
function extractRNetParams() {
|
|
var sharedParams = extractSharedParams([3, 28, 48, 64], 'rnet', true);
|
|
var fc1 = extractFCParams(576, 128, 'rnet/fc1');
|
|
var prelu4_alpha = extractPReluParams(128, 'rnet/prelu4_alpha');
|
|
var fc2_1 = extractFCParams(128, 2, 'rnet/fc2_1');
|
|
var fc2_2 = extractFCParams(128, 4, 'rnet/fc2_2');
|
|
return tslib_1.__assign({}, sharedParams, { fc1: fc1, prelu4_alpha: prelu4_alpha, fc2_1: fc2_1, fc2_2: fc2_2 });
|
|
}
|
|
function extractONetParams() {
|
|
var sharedParams = extractSharedParams([3, 32, 64, 64], 'onet');
|
|
var conv4 = extractConvParams(64, 128, 2, 'onet/conv4');
|
|
var prelu4_alpha = extractPReluParams(128, 'onet/prelu4_alpha');
|
|
var fc1 = extractFCParams(1152, 256, 'onet/fc1');
|
|
var prelu5_alpha = extractPReluParams(256, 'onet/prelu5_alpha');
|
|
var fc2_1 = extractFCParams(256, 2, 'onet/fc2_1');
|
|
var fc2_2 = extractFCParams(256, 4, 'onet/fc2_2');
|
|
var fc2_3 = extractFCParams(256, 10, 'onet/fc2_3');
|
|
return tslib_1.__assign({}, sharedParams, { conv4: conv4, prelu4_alpha: prelu4_alpha, fc1: fc1, prelu5_alpha: prelu5_alpha, fc2_1: fc2_1, fc2_2: fc2_2, fc2_3: fc2_3 });
|
|
}
|
|
return {
|
|
extractPNetParams: extractPNetParams,
|
|
extractRNetParams: extractRNetParams,
|
|
extractONetParams: extractONetParams
|
|
};
|
|
}
|
|
export function extractParams(weights) {
|
|
var _a = TfjsImageRecognitionBase.extractWeightsFactory(weights), extractWeights = _a.extractWeights, getRemainingWeights = _a.getRemainingWeights;
|
|
var paramMappings = [];
|
|
var _b = extractorsFactory(extractWeights, paramMappings), extractPNetParams = _b.extractPNetParams, extractRNetParams = _b.extractRNetParams, extractONetParams = _b.extractONetParams;
|
|
var pnet = extractPNetParams();
|
|
var rnet = extractRNetParams();
|
|
var onet = extractONetParams();
|
|
if (getRemainingWeights().length !== 0) {
|
|
throw new Error("weights remaing after extract: " + getRemainingWeights().length);
|
|
}
|
|
return { params: { pnet: pnet, rnet: rnet, onet: onet }, paramMappings: paramMappings };
|
|
}
|
|
//# sourceMappingURL=extractParams.js.map
|