server-json/node_modules/face-api.js/build/es6/faceExpressionNet/FaceExpressionNet.js
2024-11-01 08:00:42 +00:00

78 lines
No EOL
3.7 KiB
JavaScript

import * as tslib_1 from "tslib";
import * as tf from '@tensorflow/tfjs-core';
import { toNetInput } from 'tfjs-image-recognition-base';
import { FaceFeatureExtractor } from '../faceFeatureExtractor/FaceFeatureExtractor';
import { FaceProcessor } from '../faceProcessor/FaceProcessor';
import { FaceExpressions } from './FaceExpressions';
var FaceExpressionNet = /** @class */ (function (_super) {
tslib_1.__extends(FaceExpressionNet, _super);
function FaceExpressionNet(faceFeatureExtractor) {
if (faceFeatureExtractor === void 0) { faceFeatureExtractor = new FaceFeatureExtractor(); }
return _super.call(this, 'FaceExpressionNet', faceFeatureExtractor) || this;
}
FaceExpressionNet.prototype.forwardInput = function (input) {
var _this = this;
return tf.tidy(function () { return tf.softmax(_this.runNet(input)); });
};
FaceExpressionNet.prototype.forward = function (input) {
return tslib_1.__awaiter(this, void 0, void 0, function () {
var _a;
return tslib_1.__generator(this, function (_b) {
switch (_b.label) {
case 0:
_a = this.forwardInput;
return [4 /*yield*/, toNetInput(input)];
case 1: return [2 /*return*/, _a.apply(this, [_b.sent()])];
}
});
});
};
FaceExpressionNet.prototype.predictExpressions = function (input) {
return tslib_1.__awaiter(this, void 0, void 0, function () {
var netInput, out, probabilitesByBatch, predictionsByBatch;
var _this = this;
return tslib_1.__generator(this, function (_a) {
switch (_a.label) {
case 0: return [4 /*yield*/, toNetInput(input)];
case 1:
netInput = _a.sent();
return [4 /*yield*/, this.forwardInput(netInput)];
case 2:
out = _a.sent();
return [4 /*yield*/, Promise.all(tf.unstack(out).map(function (t) { return tslib_1.__awaiter(_this, void 0, void 0, function () {
var data;
return tslib_1.__generator(this, function (_a) {
switch (_a.label) {
case 0: return [4 /*yield*/, t.data()];
case 1:
data = _a.sent();
t.dispose();
return [2 /*return*/, data];
}
});
}); }))];
case 3:
probabilitesByBatch = _a.sent();
out.dispose();
predictionsByBatch = probabilitesByBatch
.map(function (probabilites) { return new FaceExpressions(probabilites); });
return [2 /*return*/, netInput.isBatchInput
? predictionsByBatch
: predictionsByBatch[0]];
}
});
});
};
FaceExpressionNet.prototype.getDefaultModelName = function () {
return 'face_expression_model';
};
FaceExpressionNet.prototype.getClassifierChannelsIn = function () {
return 256;
};
FaceExpressionNet.prototype.getClassifierChannelsOut = function () {
return 7;
};
return FaceExpressionNet;
}(FaceProcessor));
export { FaceExpressionNet };
//# sourceMappingURL=FaceExpressionNet.js.map