| .. | ||
| onnx | ||
| convert_models.py | ||
| README.md | ||
| test_rknn.py | ||
git clone https://github.com/Daedaluz/rknn-docker.git
cd rknn-docker
sudo docker build -t rknn-lite .
docker run -it --rm
-v $(pwd):/workspace
rknn-lite
bash
cd wirkspace
python3 convert_models.py
poi python3 test_rknn.py risultato Runtime init OK (CPU mode)
SCRFD (Face Detector) https://github.com/yakhyo/face-reidentification/releases/download/v0.0.1/det_2.5g.onnx opz https://github.com/yakhyo/face-reidentification/releases/download/v0.0.1/det_500m.onnx https://github.com/yakhyo/face-reidentification/releases/download/v0.0.1/det_10g.onnx
ArcFace leggero https://github.com/yakhyo/face-reidentification/releases/download/v0.0.1/w600k_mbf.onnx pesante e piu accurato https://github.com/yakhyo/face-reidentification/releases/download/v0.0.1/w600k_r50.onnx
SCRFD (Face Detector) – ONNX diretto
Dalla release del progetto face‑reidentification che include i modelli SCRFD:
SCRFD 2.5G
https://github.com/yakhyo/face-reidentification/releases/download/v0.0.1/det_2.5g.onnx
(Opzionali)
SCRFD 500Mhttps://github.com/yakhyo/face-reidentification/releases/download/v0.0.1/det_500m.onnx
SCRFD 10Ghttps://github.com/yakhyo/face-reidentification/releases/download/v0.0.1/det_10g.onnx
🔹 ArcFace (Face Recognition) – ONNX diretto
Dalla stessa release, modelli ArcFace in ONNX:
ArcFace MobileFace (veloce, leggero)
https://github.com/yakhyo/face-reidentification/releases/download/v0.0.1/w600k_mbf.onnx
ArcFace ResNet‑50 (più pesante, più accurato)
https://github.com/yakhyo/face-reidentification/releases/download/v0.0.1/w600k_r50.onnx
📌 Consiglio tecnico per RK3588
Per Orange Pi 5 Plus:
SCRFD 2.5G → miglior compromesso velocità/precisione
ArcFace MobileFace (w600k_mbf.onnx) → più leggero, conversione RKNN più stabile